MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. N06920 Nickel

355.0 aluminum belongs to the aluminum alloys classification, while N06920 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 1.5 to 2.6
39
Fatigue Strength, MPa 55 to 70
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
82
Shear Strength, MPa 150 to 240
500
Tensile Strength: Ultimate (UTS), MPa 200 to 260
730
Tensile Strength: Yield (Proof), MPa 150 to 190
270

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 620
1500
Melting Onset (Solidus), °C 560
1440
Specific Heat Capacity, J/kg-K 890
440
Thermal Conductivity, W/m-K 150 to 170
11
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38 to 43
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120 to 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.0
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1120
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
230
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 20 to 27
24
Strength to Weight: Bending, points 28 to 33
21
Thermal Diffusivity, mm2/s 60 to 69
2.8
Thermal Shock Resistance, points 9.1 to 12
19

Alloy Composition

Aluminum (Al), % 90.3 to 94.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.25
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.6
17 to 20
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
36.9 to 53.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 5.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0