MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. N08135 Stainless Steel

355.0 aluminum belongs to the aluminum alloys classification, while N08135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is N08135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.5 to 2.6
46
Fatigue Strength, MPa 55 to 70
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Shear Strength, MPa 150 to 240
400
Tensile Strength: Ultimate (UTS), MPa 200 to 260
570
Tensile Strength: Yield (Proof), MPa 150 to 190
240

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 890
460
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.0
6.8
Embodied Energy, MJ/kg 150
94
Embodied Water, L/kg 1120
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
210
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 27
19
Strength to Weight: Bending, points 28 to 33
19
Thermal Shock Resistance, points 9.1 to 12
13

Alloy Composition

Aluminum (Al), % 90.3 to 94.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.25
20.5 to 23.5
Copper (Cu), % 1.0 to 1.5
0 to 0.7
Iron (Fe), % 0 to 0.6
30.2 to 42.3
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
33 to 38
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 5.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0.2 to 0.8
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0