MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. R30003 Cobalt

355.0 aluminum belongs to the aluminum alloys classification, while R30003 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is R30003 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 1.5 to 2.6
10 to 73
Fatigue Strength, MPa 55 to 70
320 to 560
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
83
Tensile Strength: Ultimate (UTS), MPa 200 to 260
970 to 1720
Tensile Strength: Yield (Proof), MPa 150 to 190
510 to 1090

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Melting Completion (Liquidus), °C 620
1400
Melting Onset (Solidus), °C 560
1440
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 150 to 170
13
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38 to 43
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120 to 140
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
95
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1120
400

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
600 to 2790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 27
32 to 57
Strength to Weight: Bending, points 28 to 33
26 to 38
Thermal Diffusivity, mm2/s 60 to 69
3.3
Thermal Shock Resistance, points 9.1 to 12
26 to 45

Alloy Composition

Aluminum (Al), % 90.3 to 94.1
0
Boron (B), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.25
19 to 21
Cobalt (Co), % 0
39 to 41
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.6
10 to 20.5
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
1.5 to 2.5
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 0
14 to 16
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 4.5 to 5.5
0 to 1.2
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0