MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. S32615 Stainless Steel

355.0 aluminum belongs to the aluminum alloys classification, while S32615 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is S32615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 72 to 83
170
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.5 to 2.6
28
Fatigue Strength, MPa 55 to 70
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 150 to 240
400
Tensile Strength: Ultimate (UTS), MPa 200 to 260
620
Tensile Strength: Yield (Proof), MPa 150 to 190
250

Thermal Properties

Latent Heat of Fusion, J/g 470
370
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 620
1350
Melting Onset (Solidus), °C 560
1310
Specific Heat Capacity, J/kg-K 890
500
Thermal Expansion, µm/m-K 22
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.0
4.4
Embodied Energy, MJ/kg 150
63
Embodied Water, L/kg 1120
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
140
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 27
23
Strength to Weight: Bending, points 28 to 33
21
Thermal Shock Resistance, points 9.1 to 12
15

Alloy Composition

Aluminum (Al), % 90.3 to 94.1
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.25
16.5 to 19.5
Copper (Cu), % 1.0 to 1.5
1.5 to 2.5
Iron (Fe), % 0 to 0.6
46.4 to 57.9
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0.3 to 1.5
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 4.5 to 5.5
4.8 to 6.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0