MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. S45503 Stainless Steel

355.0 aluminum belongs to the aluminum alloys classification, while S45503 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is S45503 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 72 to 83
410 to 500
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.5 to 2.6
4.6 to 6.8
Fatigue Strength, MPa 55 to 70
710 to 800
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 150 to 240
940 to 1070
Tensile Strength: Ultimate (UTS), MPa 200 to 260
1610 to 1850
Tensile Strength: Yield (Proof), MPa 150 to 190
1430 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 470
270
Maximum Temperature: Mechanical, °C 180
760
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 890
470
Thermal Expansion, µm/m-K 22
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.0
3.4
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1120
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
82 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 27
57 to 65
Strength to Weight: Bending, points 28 to 33
39 to 43
Thermal Shock Resistance, points 9.1 to 12
56 to 64

Alloy Composition

Aluminum (Al), % 90.3 to 94.1
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.25
11 to 12.5
Copper (Cu), % 1.0 to 1.5
1.5 to 2.5
Iron (Fe), % 0 to 0.6
72.4 to 78.9
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
7.5 to 9.5
Niobium (Nb), % 0
0.1 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 4.5 to 5.5
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
1.0 to 1.4
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0