MakeItFrom.com
Menu (ESC)

356.0-F Aluminum vs. As-cast C82400 Copper

356.0-F aluminum belongs to the aluminum alloys classification, while as-cast C82400 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0-F aluminum and the bottom bar is as-cast C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 3.8
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
45
Tensile Strength: Ultimate (UTS), MPa 160
500
Tensile Strength: Yield (Proof), MPa 100
260

Thermal Properties

Latent Heat of Fusion, J/g 500
230
Maximum Temperature: Mechanical, °C 170
270
Melting Completion (Liquidus), °C 620
1000
Melting Onset (Solidus), °C 570
900
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
25
Electrical Conductivity: Equal Weight (Specific), % IACS 140
26

Otherwise Unclassified Properties

Density, g/cm3 2.6
8.8
Embodied Carbon, kg CO2/kg material 8.0
8.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.3
83
Resilience: Unit (Modulus of Resilience), kJ/m3 70
270
Stiffness to Weight: Axial, points 15
7.6
Stiffness to Weight: Bending, points 53
19
Strength to Weight: Axial, points 17
16
Strength to Weight: Bending, points 25
16
Thermal Diffusivity, mm2/s 64
39
Thermal Shock Resistance, points 7.6
17

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 0 to 0.25
96 to 98.2
Iron (Fe), % 0 to 0.6
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 6.5 to 7.5
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0 to 0.12
Zinc (Zn), % 0 to 0.35
0 to 0.1
Residuals, % 0
0 to 0.5