MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. ACI-ASTM CA15 Steel

356.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA15 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is ACI-ASTM CA15 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 75
220
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.0 to 3.8
21
Fatigue Strength, MPa 55 to 75
370
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 160 to 240
700
Tensile Strength: Yield (Proof), MPa 100 to 190
570

Thermal Properties

Latent Heat of Fusion, J/g 500
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 570
1500
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150 to 170
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1110
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
140
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
820
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 17 to 26
25
Strength to Weight: Bending, points 25 to 33
23
Thermal Diffusivity, mm2/s 64 to 71
6.7
Thermal Shock Resistance, points 7.6 to 11
26

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.6
81.8 to 88.5
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0