MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. ACI-ASTM CK20 Steel

356.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK20 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is ACI-ASTM CK20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 75
150
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.0 to 3.8
37
Fatigue Strength, MPa 55 to 75
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 160 to 240
530
Tensile Strength: Yield (Proof), MPa 100 to 190
260

Thermal Properties

Latent Heat of Fusion, J/g 500
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1400
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150 to 170
14
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
4.4
Embodied Energy, MJ/kg 150
62
Embodied Water, L/kg 1110
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
160
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 17 to 26
19
Strength to Weight: Bending, points 25 to 33
19
Thermal Diffusivity, mm2/s 64 to 71
3.7
Thermal Shock Resistance, points 7.6 to 11
13

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
23 to 27
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.6
46.7 to 58
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0