MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. AISI 403 Stainless Steel

356.0 aluminum belongs to the aluminum alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 75
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.0 to 3.8
16 to 25
Fatigue Strength, MPa 55 to 75
200 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 140 to 190
340 to 480
Tensile Strength: Ultimate (UTS), MPa 160 to 240
530 to 780
Tensile Strength: Yield (Proof), MPa 100 to 190
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 500
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150 to 170
28
Thermal Expansion, µm/m-K 21
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1110
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
210 to 840
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 17 to 26
19 to 28
Strength to Weight: Bending, points 25 to 33
19 to 24
Thermal Diffusivity, mm2/s 64 to 71
7.6
Thermal Shock Resistance, points 7.6 to 11
20 to 29

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.6
84.7 to 88.5
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0