MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. ASTM A387 Grade 91 Class 2

356.0 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 91 class 2 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 75
200
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.0 to 3.8
20
Fatigue Strength, MPa 55 to 75
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 140 to 190
420
Tensile Strength: Ultimate (UTS), MPa 160 to 240
670
Tensile Strength: Yield (Proof), MPa 100 to 190
470

Thermal Properties

Latent Heat of Fusion, J/g 500
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150 to 170
26
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1110
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
120
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
580
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 17 to 26
24
Strength to Weight: Bending, points 25 to 33
22
Thermal Diffusivity, mm2/s 64 to 71
6.9
Thermal Shock Resistance, points 7.6 to 11
19

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.6
87.3 to 90.3
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 6.5 to 7.5
0.2 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.35
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0