MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. EN 1.0258 Steel

356.0 aluminum belongs to the aluminum alloys classification, while EN 1.0258 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is EN 1.0258 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 75
140
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.0 to 3.8
23
Fatigue Strength, MPa 55 to 75
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 140 to 190
310
Tensile Strength: Ultimate (UTS), MPa 160 to 240
490
Tensile Strength: Yield (Proof), MPa 100 to 190
290

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150 to 170
49
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1110
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
95
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 17 to 26
17
Strength to Weight: Bending, points 25 to 33
18
Thermal Diffusivity, mm2/s 64 to 71
13
Thermal Shock Resistance, points 7.6 to 11
16

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 0 to 0.6
96.9 to 100
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0