MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. EN 1.3521 Steel

356.0 aluminum belongs to the aluminum alloys classification, while EN 1.3521 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is EN 1.3521 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 75
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 160 to 240
490 to 1390

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150 to 170
45
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.3
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1110
52

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 17 to 26
17 to 49
Strength to Weight: Bending, points 25 to 33
18 to 35
Thermal Diffusivity, mm2/s 64 to 71
12
Thermal Shock Resistance, points 7.6 to 11
14 to 41

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0 to 0.050
Carbon (C), % 0
0.14 to 0.19
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 0 to 0.6
96.8 to 98.2
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
1.0 to 1.3
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0