MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. SAE-AISI 1020 Steel

356.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1020 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is SAE-AISI 1020 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 75
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.0 to 3.8
17 to 28
Fatigue Strength, MPa 55 to 75
180 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 140 to 190
280
Tensile Strength: Ultimate (UTS), MPa 160 to 240
430 to 460
Tensile Strength: Yield (Proof), MPa 100 to 190
240 to 380

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150 to 170
52
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
11
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1110
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
72 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
150 to 380
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 17 to 26
15 to 16
Strength to Weight: Bending, points 25 to 33
16 to 17
Thermal Diffusivity, mm2/s 64 to 71
14
Thermal Shock Resistance, points 7.6 to 11
13 to 14

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0
Carbon (C), % 0
0.18 to 0.23
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.6
99.08 to 99.52
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0