MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. C91000 Bronze

356.0 aluminum belongs to the aluminum alloys classification, while C91000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is C91000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 75
180
Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 2.0 to 3.8
7.0
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
39
Tensile Strength: Ultimate (UTS), MPa 160 to 240
230
Tensile Strength: Yield (Proof), MPa 100 to 190
150

Thermal Properties

Latent Heat of Fusion, J/g 500
180
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 620
960
Melting Onset (Solidus), °C 570
820
Specific Heat Capacity, J/kg-K 900
360
Thermal Conductivity, W/m-K 150 to 170
64
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.6
8.6
Embodied Carbon, kg CO2/kg material 8.0
4.1
Embodied Energy, MJ/kg 150
67
Embodied Water, L/kg 1110
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
14
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
100
Stiffness to Weight: Axial, points 15
6.8
Stiffness to Weight: Bending, points 53
18
Strength to Weight: Axial, points 17 to 26
7.5
Strength to Weight: Bending, points 25 to 33
9.7
Thermal Diffusivity, mm2/s 64 to 71
20
Thermal Shock Resistance, points 7.6 to 11
8.8

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.25
84 to 86
Iron (Fe), % 0 to 0.6
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0
0 to 0.8
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 6.5 to 7.5
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
14 to 16
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0 to 1.5
Residuals, % 0
0 to 0.6