MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. N08028 Stainless Steel

356.0 aluminum belongs to the aluminum alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 75
180
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.0 to 3.8
45
Fatigue Strength, MPa 55 to 75
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Shear Strength, MPa 140 to 190
400
Tensile Strength: Ultimate (UTS), MPa 160 to 240
570
Tensile Strength: Yield (Proof), MPa 100 to 190
240

Thermal Properties

Latent Heat of Fusion, J/g 500
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150 to 170
12
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 8.0
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1110
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
210
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 17 to 26
19
Strength to Weight: Bending, points 25 to 33
19
Thermal Diffusivity, mm2/s 64 to 71
3.2
Thermal Shock Resistance, points 7.6 to 11
12

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0 to 0.25
0.6 to 1.4
Iron (Fe), % 0 to 0.6
29 to 40.4
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0