MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. R30035 Cobalt

356.0 aluminum belongs to the aluminum alloys classification, while R30035 cobalt belongs to the cobalt alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is R30035 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220 to 230
Elongation at Break, % 2.0 to 3.8
9.0 to 46
Fatigue Strength, MPa 55 to 75
170 to 740
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
84 to 89
Tensile Strength: Ultimate (UTS), MPa 160 to 240
900 to 1900
Tensile Strength: Yield (Proof), MPa 100 to 190
300 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 500
320
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 570
1320
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 150 to 170
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
100
Density, g/cm3 2.6
8.7
Embodied Carbon, kg CO2/kg material 8.0
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1110
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
160 to 320
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
210 to 5920
Stiffness to Weight: Axial, points 15
14 to 15
Stiffness to Weight: Bending, points 53
23 to 24
Strength to Weight: Axial, points 17 to 26
29 to 61
Strength to Weight: Bending, points 25 to 33
24 to 39
Thermal Diffusivity, mm2/s 64 to 71
3.0
Thermal Shock Resistance, points 7.6 to 11
23 to 46

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0
Boron (B), % 0
0 to 0.015
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
29.1 to 39
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.6
0 to 1.0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0 to 0.15
Molybdenum (Mo), % 0
9.0 to 10.5
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 6.5 to 7.5
0 to 0.15
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 1.0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0