MakeItFrom.com
Menu (ESC)

357.0 Aluminum vs. AISI 304LN Stainless Steel

357.0 aluminum belongs to the aluminum alloys classification, while AISI 304LN stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 357.0 aluminum and the bottom bar is AISI 304LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95
190 to 350
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4
7.8 to 46
Fatigue Strength, MPa 76
200 to 440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 200
400 to 680
Tensile Strength: Ultimate (UTS), MPa 350
580 to 1160
Tensile Strength: Yield (Proof), MPa 300
230 to 870

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
83 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 620
140 to 1900
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
21 to 41
Strength to Weight: Bending, points 43
20 to 31
Thermal Diffusivity, mm2/s 64
4.0
Thermal Shock Resistance, points 17
13 to 26

Alloy Composition

Aluminum (Al), % 91.3 to 93.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
65 to 73.9
Magnesium (Mg), % 0.45 to 0.6
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Nickel (Ni), % 0
8.0 to 12
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 6.5 to 7.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0