MakeItFrom.com
Menu (ESC)

357.0 Aluminum vs. AISI 310MoLN Stainless Steel

357.0 aluminum belongs to the aluminum alloys classification, while AISI 310MoLN stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 357.0 aluminum and the bottom bar is AISI 310MoLN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95
190
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4
28
Fatigue Strength, MPa 76
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 200
400
Tensile Strength: Ultimate (UTS), MPa 350
610
Tensile Strength: Yield (Proof), MPa 300
290

Thermal Properties

Latent Heat of Fusion, J/g 500
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
5.0
Embodied Energy, MJ/kg 150
70
Embodied Water, L/kg 1110
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
140
Resilience: Unit (Modulus of Resilience), kJ/m3 620
200
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
21
Strength to Weight: Bending, points 43
20
Thermal Diffusivity, mm2/s 64
3.7
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 91.3 to 93.1
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
45.2 to 53.8
Magnesium (Mg), % 0.45 to 0.6
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Molybdenum (Mo), % 0
1.6 to 2.6
Nickel (Ni), % 0
20.5 to 23.5
Nitrogen (N), % 0
0.090 to 0.15
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0