MakeItFrom.com
Menu (ESC)

357.0 Aluminum vs. AISI 384 Stainless Steel

357.0 aluminum belongs to the aluminum alloys classification, while AISI 384 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 357.0 aluminum and the bottom bar is AISI 384 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95
150
Elastic (Young's, Tensile) Modulus, GPa 70
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 350
480

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
3.7
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1110
150

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
17
Strength to Weight: Bending, points 43
17
Thermal Diffusivity, mm2/s 64
4.3
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 91.3 to 93.1
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
60.9 to 68
Magnesium (Mg), % 0.45 to 0.6
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Nickel (Ni), % 0
17 to 19
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0