MakeItFrom.com
Menu (ESC)

357.0 Aluminum vs. ASTM A369 Grade FP12

357.0 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP12 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 357.0 aluminum and the bottom bar is ASTM A369 grade FP12.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95
140
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4
20
Fatigue Strength, MPa 76
170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 200
300
Tensile Strength: Ultimate (UTS), MPa 350
470
Tensile Strength: Yield (Proof), MPa 300
250

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 620
1470
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
45
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.8
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1110
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
81
Resilience: Unit (Modulus of Resilience), kJ/m3 620
160
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
17
Strength to Weight: Bending, points 43
17
Thermal Diffusivity, mm2/s 64
12
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 91.3 to 93.1
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
0.8 to 1.3
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
96.8 to 98.4
Magnesium (Mg), % 0.45 to 0.6
0
Manganese (Mn), % 0 to 0.030
0.3 to 0.61
Molybdenum (Mo), % 0
0.44 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0