MakeItFrom.com
Menu (ESC)

357.0 Aluminum vs. ASTM A387 Grade 21L Class 1

357.0 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 357.0 aluminum and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95
150
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4
21
Fatigue Strength, MPa 76
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 200
310
Tensile Strength: Ultimate (UTS), MPa 350
500
Tensile Strength: Yield (Proof), MPa 300
230

Thermal Properties

Latent Heat of Fusion, J/g 500
260
Maximum Temperature: Mechanical, °C 170
480
Melting Completion (Liquidus), °C 620
1470
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
41
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.1
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1110
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
84
Resilience: Unit (Modulus of Resilience), kJ/m3 620
140
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
18
Strength to Weight: Bending, points 43
18
Thermal Diffusivity, mm2/s 64
11
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 91.3 to 93.1
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
94.4 to 96.1
Magnesium (Mg), % 0.45 to 0.6
0
Manganese (Mn), % 0 to 0.030
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0