MakeItFrom.com
Menu (ESC)

357.0 Aluminum vs. EN 1.4587 Stainless Steel

357.0 aluminum belongs to the aluminum alloys classification, while EN 1.4587 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 357.0 aluminum and the bottom bar is EN 1.4587 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95
160
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4
34
Fatigue Strength, MPa 76
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 350
540
Tensile Strength: Yield (Proof), MPa 300
250

Thermal Properties

Latent Heat of Fusion, J/g 500
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 560
1370
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 8.0
6.3
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1110
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
150
Resilience: Unit (Modulus of Resilience), kJ/m3 620
150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
18
Strength to Weight: Bending, points 43
18
Thermal Diffusivity, mm2/s 64
4.5
Thermal Shock Resistance, points 17
13

Alloy Composition

Aluminum (Al), % 91.3 to 93.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
2.0 to 3.0
Iron (Fe), % 0 to 0.15
32.7 to 41.9
Magnesium (Mg), % 0.45 to 0.6
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
28 to 30
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0