MakeItFrom.com
Menu (ESC)

357.0 Aluminum vs. EN 1.4736 Stainless Steel

357.0 aluminum belongs to the aluminum alloys classification, while EN 1.4736 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 357.0 aluminum and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95
170
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4
28
Fatigue Strength, MPa 76
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 200
370
Tensile Strength: Ultimate (UTS), MPa 350
580
Tensile Strength: Yield (Proof), MPa 300
310

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 910
490
Thermal Conductivity, W/m-K 150
21
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.6
7.6
Embodied Carbon, kg CO2/kg material 8.0
2.4
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1110
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
140
Resilience: Unit (Modulus of Resilience), kJ/m3 620
250
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
21
Strength to Weight: Bending, points 43
20
Thermal Diffusivity, mm2/s 64
5.6
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 91.3 to 93.1
1.7 to 2.1
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
77 to 81.1
Magnesium (Mg), % 0.45 to 0.6
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0.2 to 0.8
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0