MakeItFrom.com
Menu (ESC)

357.0 Aluminum vs. EN 1.7711 Steel

357.0 aluminum belongs to the aluminum alloys classification, while EN 1.7711 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 357.0 aluminum and the bottom bar is EN 1.7711 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95
210 to 280
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4
16 to 22
Fatigue Strength, MPa 76
290 to 520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 200
440 to 570
Tensile Strength: Ultimate (UTS), MPa 350
690 to 930
Tensile Strength: Yield (Proof), MPa 300
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
33
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.3
Embodied Energy, MJ/kg 150
32
Embodied Water, L/kg 1110
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
130 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 620
430 to 1690
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
24 to 33
Strength to Weight: Bending, points 43
22 to 27
Thermal Diffusivity, mm2/s 64
8.9
Thermal Shock Resistance, points 17
24 to 32

Alloy Composition

Aluminum (Al), % 91.3 to 93.1
0 to 0.015
Carbon (C), % 0
0.36 to 0.44
Chromium (Cr), % 0
0.9 to 1.2
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
96 to 97.5
Magnesium (Mg), % 0.45 to 0.6
0
Manganese (Mn), % 0 to 0.030
0.45 to 0.85
Molybdenum (Mo), % 0
0.5 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0