MakeItFrom.com
Menu (ESC)

357.0 Aluminum vs. EN 2.4889 Nickel

357.0 aluminum belongs to the aluminum alloys classification, while EN 2.4889 nickel belongs to the nickel alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 357.0 aluminum and the bottom bar is EN 2.4889 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95
190
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4
39
Fatigue Strength, MPa 76
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 200
490
Tensile Strength: Ultimate (UTS), MPa 350
720
Tensile Strength: Yield (Proof), MPa 300
270

Thermal Properties

Latent Heat of Fusion, J/g 500
350
Maximum Temperature: Mechanical, °C 170
1200
Melting Completion (Liquidus), °C 620
1350
Melting Onset (Solidus), °C 560
1300
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 8.0
6.9
Embodied Energy, MJ/kg 150
98
Embodied Water, L/kg 1110
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
220
Resilience: Unit (Modulus of Resilience), kJ/m3 620
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
25
Strength to Weight: Bending, points 43
22
Thermal Diffusivity, mm2/s 64
3.4
Thermal Shock Resistance, points 17
19

Alloy Composition

Aluminum (Al), % 91.3 to 93.1
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.15
21 to 25
Magnesium (Mg), % 0.45 to 0.6
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Nickel (Ni), % 0
45 to 50.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 6.5 to 7.5
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0