MakeItFrom.com
Menu (ESC)

357.0 Aluminum vs. SAE-AISI 8645 Steel

357.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 8645 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 357.0 aluminum and the bottom bar is SAE-AISI 8645 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4
12 to 23
Fatigue Strength, MPa 76
280 to 350
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 200
380 to 400
Tensile Strength: Ultimate (UTS), MPa 350
600 to 670
Tensile Strength: Yield (Proof), MPa 300
390 to 560

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1110
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
77 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 620
420 to 840
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 38
21 to 24
Strength to Weight: Bending, points 43
20 to 22
Thermal Diffusivity, mm2/s 64
10
Thermal Shock Resistance, points 17
18 to 20

Alloy Composition

Aluminum (Al), % 91.3 to 93.1
0
Carbon (C), % 0
0.43 to 0.48
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
96.5 to 97.7
Magnesium (Mg), % 0.45 to 0.6
0
Manganese (Mn), % 0 to 0.030
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0
0.4 to 0.7
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 6.5 to 7.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0