MakeItFrom.com
Menu (ESC)

357.0 Aluminum vs. S44700 Stainless Steel

357.0 aluminum belongs to the aluminum alloys classification, while S44700 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 357.0 aluminum and the bottom bar is S44700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95
200
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.4
23
Fatigue Strength, MPa 76
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
82
Shear Strength, MPa 200
380
Tensile Strength: Ultimate (UTS), MPa 350
600
Tensile Strength: Yield (Proof), MPa 300
450

Thermal Properties

Latent Heat of Fusion, J/g 500
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 910
480
Thermal Expansion, µm/m-K 21
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.6
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1110
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
120
Resilience: Unit (Modulus of Resilience), kJ/m3 620
480
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 38
21
Strength to Weight: Bending, points 43
20
Thermal Shock Resistance, points 17
19

Alloy Composition

Aluminum (Al), % 91.3 to 93.1
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0 to 0.050
0 to 0.15
Iron (Fe), % 0 to 0.15
64.9 to 68.5
Magnesium (Mg), % 0.45 to 0.6
0
Manganese (Mn), % 0 to 0.030
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0
0 to 0.15
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0