MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. ACI-ASTM CD3MCuN Steel

358.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CD3MCuN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is ACI-ASTM CD3MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.5 to 6.0
29
Fatigue Strength, MPa 100 to 110
370
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 350 to 370
790
Tensile Strength: Yield (Proof), MPa 290 to 320
500

Thermal Properties

Latent Heat of Fusion, J/g 520
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
20
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.7
3.9
Embodied Energy, MJ/kg 160
54
Embodied Water, L/kg 1090
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 20
200
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 710
620
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 37 to 39
28
Strength to Weight: Bending, points 42 to 44
24
Thermal Diffusivity, mm2/s 63
4.1
Thermal Shock Resistance, points 16 to 17
22

Alloy Composition

Aluminum (Al), % 89.1 to 91.8
0
Beryllium (Be), % 0.1 to 0.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.2
24 to 26.7
Copper (Cu), % 0 to 0.2
1.4 to 1.9
Iron (Fe), % 0 to 0.3
58.2 to 65.9
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 1.2
Molybdenum (Mo), % 0
2.9 to 3.8
Nickel (Ni), % 0
5.6 to 6.7
Nitrogen (N), % 0
0.22 to 0.33
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.6 to 8.6
0 to 1.1
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0