MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. ASTM B817 Type I

358.0 aluminum belongs to the aluminum alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
100
Elongation at Break, % 3.5 to 6.0
4.0 to 13
Fatigue Strength, MPa 100 to 110
360 to 520
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 350 to 370
770 to 960
Tensile Strength: Yield (Proof), MPa 290 to 320
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 520
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 600
1600
Melting Onset (Solidus), °C 560
1550
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 150
7.1
Thermal Expansion, µm/m-K 21
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 19
36
Density, g/cm3 2.6
4.4
Embodied Carbon, kg CO2/kg material 8.7
38
Embodied Energy, MJ/kg 160
610
Embodied Water, L/kg 1090
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 20
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 710
2310 to 3540
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
35
Strength to Weight: Axial, points 37 to 39
48 to 60
Strength to Weight: Bending, points 42 to 44
42 to 49
Thermal Diffusivity, mm2/s 63
2.9
Thermal Shock Resistance, points 16 to 17
54 to 68

Alloy Composition

Aluminum (Al), % 89.1 to 91.8
5.5 to 6.8
Beryllium (Be), % 0.1 to 0.3
0
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.3
0 to 0.4
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 7.6 to 8.6
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Titanium (Ti), % 0.1 to 0.2
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.4