MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. AWS E2209

358.0 aluminum belongs to the aluminum alloys classification, while AWS E2209 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is AWS E2209.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.5 to 6.0
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 350 to 370
770

Thermal Properties

Latent Heat of Fusion, J/g 520
300
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
20
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.7
4.0
Embodied Energy, MJ/kg 160
55
Embodied Water, L/kg 1090
170

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 37 to 39
27
Strength to Weight: Bending, points 42 to 44
24
Thermal Diffusivity, mm2/s 63
4.3
Thermal Shock Resistance, points 16 to 17
20

Alloy Composition

Aluminum (Al), % 89.1 to 91.8
0
Beryllium (Be), % 0.1 to 0.3
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.2
21.5 to 23.5
Copper (Cu), % 0 to 0.2
0 to 0.75
Iron (Fe), % 0 to 0.3
58.4 to 66.9
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0.5 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
8.5 to 10.5
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.6 to 8.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0