MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. EN 1.3551 Steel

358.0 aluminum belongs to the aluminum alloys classification, while EN 1.3551 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is EN 1.3551 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 350 to 370
720

Thermal Properties

Latent Heat of Fusion, J/g 520
260
Maximum Temperature: Mechanical, °C 170
530
Melting Completion (Liquidus), °C 600
1490
Melting Onset (Solidus), °C 560
1450
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 150
36
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
8.6
Electrical Conductivity: Equal Weight (Specific), % IACS 130
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.0
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.7
4.9
Embodied Energy, MJ/kg 160
71
Embodied Water, L/kg 1090
82

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 37 to 39
26
Strength to Weight: Bending, points 42 to 44
23
Thermal Diffusivity, mm2/s 63
9.8
Thermal Shock Resistance, points 16 to 17
21

Alloy Composition

Aluminum (Al), % 89.1 to 91.8
0
Beryllium (Be), % 0.1 to 0.3
0
Carbon (C), % 0
0.77 to 0.85
Chromium (Cr), % 0 to 0.2
3.9 to 4.3
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.3
88.8 to 91.1
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0.15 to 0.35
Molybdenum (Mo), % 0
4.0 to 4.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.6 to 8.6
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.2
0
Tungsten (W), % 0
0 to 0.25
Vanadium (V), % 0
0.9 to 1.1
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0