MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. EN 1.4410 Stainless Steel

358.0 aluminum belongs to the aluminum alloys classification, while EN 1.4410 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is EN 1.4410 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 3.5 to 6.0
24
Fatigue Strength, MPa 100 to 110
410
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
81
Shear Strength, MPa 300 to 320
540
Tensile Strength: Ultimate (UTS), MPa 350 to 370
850
Tensile Strength: Yield (Proof), MPa 290 to 320
600

Thermal Properties

Latent Heat of Fusion, J/g 520
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
20
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.7
4.0
Embodied Energy, MJ/kg 160
56
Embodied Water, L/kg 1090
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 20
180
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 710
880
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 37 to 39
30
Strength to Weight: Bending, points 42 to 44
26
Thermal Diffusivity, mm2/s 63
4.0
Thermal Shock Resistance, points 16 to 17
23

Alloy Composition

Aluminum (Al), % 89.1 to 91.8
0
Beryllium (Be), % 0.1 to 0.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.2
24 to 26
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.3
58.1 to 66.8
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.5
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 7.6 to 8.6
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0