MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. EN 1.4971 Stainless Steel

358.0 aluminum belongs to the aluminum alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 3.5 to 6.0
34
Fatigue Strength, MPa 100 to 110
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
81
Shear Strength, MPa 300 to 320
530
Tensile Strength: Ultimate (UTS), MPa 350 to 370
800
Tensile Strength: Yield (Proof), MPa 290 to 320
340

Thermal Properties

Latent Heat of Fusion, J/g 520
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 21
15

Otherwise Unclassified Properties

Base Metal Price, % relative 19
70
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 8.7
7.6
Embodied Energy, MJ/kg 160
110
Embodied Water, L/kg 1090
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 20
220
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 710
280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 37 to 39
26
Strength to Weight: Bending, points 42 to 44
23
Thermal Diffusivity, mm2/s 63
3.4
Thermal Shock Resistance, points 16 to 17
19

Alloy Composition

Aluminum (Al), % 89.1 to 91.8
0
Beryllium (Be), % 0.1 to 0.3
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0 to 0.2
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.3
24.3 to 37.1
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 7.6 to 8.6
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.2
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0