MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. C72500 Copper-nickel

358.0 aluminum belongs to the aluminum alloys classification, while C72500 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is C72500 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
45
Tensile Strength: Ultimate (UTS), MPa 350 to 370
420 to 780

Thermal Properties

Latent Heat of Fusion, J/g 520
210
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 600
1130
Melting Onset (Solidus), °C 560
1060
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 150
54
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
11
Electrical Conductivity: Equal Weight (Specific), % IACS 130
11

Otherwise Unclassified Properties

Base Metal Price, % relative 19
35
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 8.7
3.6
Embodied Energy, MJ/kg 160
55
Embodied Water, L/kg 1090
320

Common Calculations

Stiffness to Weight: Axial, points 15
7.6
Stiffness to Weight: Bending, points 53
19
Strength to Weight: Axial, points 37 to 39
13 to 24
Strength to Weight: Bending, points 42 to 44
14 to 21
Thermal Diffusivity, mm2/s 63
16
Thermal Shock Resistance, points 16 to 17
14 to 27

Alloy Composition

Aluminum (Al), % 89.1 to 91.8
0
Beryllium (Be), % 0.1 to 0.3
0
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.2
85.2 to 89.7
Iron (Fe), % 0 to 0.3
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 0.2
Nickel (Ni), % 0
8.5 to 10.5
Silicon (Si), % 7.6 to 8.6
0
Tin (Sn), % 0
1.8 to 2.8
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 0 to 0.2
0 to 0.5
Residuals, % 0
0 to 0.2