MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. N06200 Nickel

358.0 aluminum belongs to the aluminum alloys classification, while N06200 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is N06200 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 3.5 to 6.0
51
Fatigue Strength, MPa 100 to 110
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
84
Shear Strength, MPa 300 to 320
560
Tensile Strength: Ultimate (UTS), MPa 350 to 370
780
Tensile Strength: Yield (Proof), MPa 290 to 320
320

Thermal Properties

Latent Heat of Fusion, J/g 520
330
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 600
1500
Melting Onset (Solidus), °C 560
1450
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 150
9.1
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
65
Density, g/cm3 2.6
8.7
Embodied Carbon, kg CO2/kg material 8.7
12
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1090
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 20
320
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 710
240
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 37 to 39
25
Strength to Weight: Bending, points 42 to 44
22
Thermal Diffusivity, mm2/s 63
2.4
Thermal Shock Resistance, points 16 to 17
21

Alloy Composition

Aluminum (Al), % 89.1 to 91.8
0 to 0.5
Beryllium (Be), % 0.1 to 0.3
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.2
22 to 24
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 0 to 0.2
1.3 to 1.9
Iron (Fe), % 0 to 0.3
0 to 3.0
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
51 to 61.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.6 to 8.6
0 to 0.080
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.1 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0