MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. S35135 Stainless Steel

358.0 aluminum belongs to the aluminum alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.5 to 6.0
34
Fatigue Strength, MPa 100 to 110
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 300 to 320
390
Tensile Strength: Ultimate (UTS), MPa 350 to 370
590
Tensile Strength: Yield (Proof), MPa 290 to 320
230

Thermal Properties

Latent Heat of Fusion, J/g 520
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 19
37
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 8.7
6.8
Embodied Energy, MJ/kg 160
94
Embodied Water, L/kg 1090
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 20
160
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 710
130
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 37 to 39
20
Strength to Weight: Bending, points 42 to 44
19
Thermal Shock Resistance, points 16 to 17
13

Alloy Composition

Aluminum (Al), % 89.1 to 91.8
0
Beryllium (Be), % 0.1 to 0.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.2
20 to 25
Copper (Cu), % 0 to 0.2
0 to 0.75
Iron (Fe), % 0 to 0.3
28.3 to 45
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 7.6 to 8.6
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.2
0.4 to 1.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0