MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. ACI-ASTM CB6 Steel

359.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB6 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is ACI-ASTM CB6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.8 to 4.9
18
Fatigue Strength, MPa 100
410
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 340 to 350
880
Tensile Strength: Yield (Proof), MPa 250 to 280
660

Thermal Properties

Latent Heat of Fusion, J/g 530
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.5
Embodied Energy, MJ/kg 150
36
Embodied Water, L/kg 1090
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
150
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
1110
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 37 to 38
32
Strength to Weight: Bending, points 42 to 43
26
Thermal Diffusivity, mm2/s 59
4.6
Thermal Shock Resistance, points 16 to 17
31

Alloy Composition

Aluminum (Al), % 88.9 to 91
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
74.4 to 81
Magnesium (Mg), % 0.5 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 5.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.5 to 9.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0