MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. AWS BNi-9

359.0 aluminum belongs to the aluminum alloys classification, while AWS BNi-9 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is AWS BNi-9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 340 to 350
580

Thermal Properties

Latent Heat of Fusion, J/g 530
300
Melting Completion (Liquidus), °C 600
1060
Melting Onset (Solidus), °C 570
1060
Specific Heat Capacity, J/kg-K 910
480
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 8.0
9.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1090
260

Common Calculations

Stiffness to Weight: Axial, points 15
12
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 37 to 38
19
Strength to Weight: Bending, points 42 to 43
18
Thermal Shock Resistance, points 16 to 17
19

Alloy Composition

Aluminum (Al), % 88.9 to 91
0 to 0.050
Boron (B), % 0
3.3 to 4.0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
13.5 to 16.5
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
0 to 1.5
Magnesium (Mg), % 0.5 to 0.7
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
77.1 to 83.3
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 8.5 to 9.5
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0 to 0.050
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5