MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. AWS E80C-Ni2

359.0 aluminum belongs to the aluminum alloys classification, while AWS E80C-Ni2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is AWS E80C-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.8 to 4.9
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 340 to 350
620
Tensile Strength: Yield (Proof), MPa 250 to 280
540

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 140
52
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.3
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1090
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
160
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
770
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 37 to 38
22
Strength to Weight: Bending, points 42 to 43
21
Thermal Diffusivity, mm2/s 59
14
Thermal Shock Resistance, points 16 to 17
18

Alloy Composition

Aluminum (Al), % 88.9 to 91
0
Carbon (C), % 0
0 to 0.12
Copper (Cu), % 0 to 0.2
0 to 0.35
Iron (Fe), % 0 to 0.2
93.8 to 98.3
Magnesium (Mg), % 0.5 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 0
1.8 to 2.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 8.5 to 9.5
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5