MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. AWS ER120S-1

359.0 aluminum belongs to the aluminum alloys classification, while AWS ER120S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.8 to 4.9
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 340 to 350
930
Tensile Strength: Yield (Proof), MPa 250 to 280
830

Thermal Properties

Latent Heat of Fusion, J/g 530
260
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 140
46
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.2
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.9
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1090
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
150
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
1850
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 37 to 38
33
Strength to Weight: Bending, points 42 to 43
27
Thermal Diffusivity, mm2/s 59
13
Thermal Shock Resistance, points 16 to 17
27

Alloy Composition

Aluminum (Al), % 88.9 to 91
0 to 0.1
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
0 to 0.6
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 0.2
92.4 to 96.1
Magnesium (Mg), % 0.5 to 0.7
0
Manganese (Mn), % 0 to 0.1
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 0
2.0 to 2.8
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 8.5 to 9.5
0.25 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0 to 0.1
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5