MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. EN 1.0580 Steel

359.0 aluminum belongs to the aluminum alloys classification, while EN 1.0580 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is EN 1.0580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 100
160 to 180
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.8 to 4.9
5.6 to 25
Fatigue Strength, MPa 100
210 to 270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 220 to 230
340 to 360
Tensile Strength: Ultimate (UTS), MPa 340 to 350
540 to 620
Tensile Strength: Yield (Proof), MPa 250 to 280
290 to 450

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 140
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1090
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
31 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
230 to 540
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 37 to 38
19 to 22
Strength to Weight: Bending, points 42 to 43
19 to 21
Thermal Diffusivity, mm2/s 59
14
Thermal Shock Resistance, points 16 to 17
17 to 20

Alloy Composition

Aluminum (Al), % 88.9 to 91
0
Carbon (C), % 0
0 to 0.22
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
97.5 to 100
Magnesium (Mg), % 0.5 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 8.5 to 9.5
0 to 0.55
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0