MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. EN 1.4849 Stainless Steel

359.0 aluminum belongs to the aluminum alloys classification, while EN 1.4849 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is EN 1.4849 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 100
140
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.8 to 4.9
4.5
Fatigue Strength, MPa 100
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 340 to 350
480
Tensile Strength: Yield (Proof), MPa 250 to 280
250

Thermal Properties

Latent Heat of Fusion, J/g 530
320
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 600
1390
Melting Onset (Solidus), °C 570
1340
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 21
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 8.0
7.1
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1090
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
18
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
160
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 37 to 38
17
Strength to Weight: Bending, points 42 to 43
17
Thermal Diffusivity, mm2/s 59
3.2
Thermal Shock Resistance, points 16 to 17
11

Alloy Composition

Aluminum (Al), % 88.9 to 91
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
32.6 to 43.5
Magnesium (Mg), % 0.5 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
36 to 39
Niobium (Nb), % 0
1.2 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.5 to 9.5
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0