MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. EN 1.5662 Steel

359.0 aluminum belongs to the aluminum alloys classification, while EN 1.5662 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is EN 1.5662 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 100
220 to 230
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.8 to 4.9
20
Fatigue Strength, MPa 100
380 to 450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 220 to 230
460 to 470
Tensile Strength: Ultimate (UTS), MPa 340 to 350
740 to 750
Tensile Strength: Yield (Proof), MPa 250 to 280
550 to 660

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 8.0
2.3
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1090
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
810 to 1150
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 37 to 38
26
Strength to Weight: Bending, points 42 to 43
23
Thermal Shock Resistance, points 16 to 17
22

Alloy Composition

Aluminum (Al), % 88.9 to 91
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
88.6 to 91.2
Magnesium (Mg), % 0.5 to 0.7
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
8.5 to 10
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.5 to 9.5
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0