MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. EN 2.4964 Cobalt

359.0 aluminum belongs to the aluminum alloys classification, while EN 2.4964 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is EN 2.4964 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 3.8 to 4.9
40
Fatigue Strength, MPa 100
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
86
Tensile Strength: Ultimate (UTS), MPa 340 to 350
960
Tensile Strength: Yield (Proof), MPa 250 to 280
390

Thermal Properties

Latent Heat of Fusion, J/g 530
290
Melting Completion (Liquidus), °C 600
1630
Melting Onset (Solidus), °C 570
1550
Specific Heat Capacity, J/kg-K 910
400
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.8

Otherwise Unclassified Properties

Density, g/cm3 2.6
9.6
Embodied Carbon, kg CO2/kg material 8.0
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1090
450

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
310
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
340
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
21
Strength to Weight: Axial, points 37 to 38
28
Strength to Weight: Bending, points 42 to 43
23
Thermal Diffusivity, mm2/s 59
3.9
Thermal Shock Resistance, points 16 to 17
25

Alloy Composition

Aluminum (Al), % 88.9 to 91
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
46.4 to 58
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
0 to 3.0
Magnesium (Mg), % 0.5 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
9.0 to 11
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.5 to 9.5
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
14 to 16
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0