MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. CC383H Copper-nickel

359.0 aluminum belongs to the aluminum alloys classification, while CC383H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is CC383H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 100
130
Elastic (Young's, Tensile) Modulus, GPa 71
140
Elongation at Break, % 3.8 to 4.9
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
52
Tensile Strength: Ultimate (UTS), MPa 340 to 350
490
Tensile Strength: Yield (Proof), MPa 250 to 280
260

Thermal Properties

Latent Heat of Fusion, J/g 530
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 600
1180
Melting Onset (Solidus), °C 570
1130
Specific Heat Capacity, J/kg-K 910
410
Thermal Conductivity, W/m-K 140
29
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
5.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
44
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 8.0
5.7
Embodied Energy, MJ/kg 150
83
Embodied Water, L/kg 1090
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
84
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
250
Stiffness to Weight: Axial, points 15
8.6
Stiffness to Weight: Bending, points 54
19
Strength to Weight: Axial, points 37 to 38
15
Strength to Weight: Bending, points 42 to 43
16
Thermal Diffusivity, mm2/s 59
8.1
Thermal Shock Resistance, points 16 to 17
17

Alloy Composition

Aluminum (Al), % 88.9 to 91
0 to 0.010
Bismuth (Bi), % 0
0 to 0.010
Boron (B), % 0
0 to 0.010
Cadmium (Cd), % 0
0 to 0.020
Carbon (C), % 0
0 to 0.030
Copper (Cu), % 0 to 0.2
64 to 69.1
Iron (Fe), % 0 to 0.2
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0.5 to 0.7
0 to 0.010
Manganese (Mn), % 0 to 0.1
0.6 to 1.2
Nickel (Ni), % 0
29 to 31
Niobium (Nb), % 0
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.010
Selenium (Se), % 0
0 to 0.010
Silicon (Si), % 8.5 to 9.5
0.3 to 0.7
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0 to 0.15
0