MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. Grade CU5MCuC Nickel

359.0 aluminum belongs to the aluminum alloys classification, while grade CU5MCuC nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is grade CU5MCuC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.8 to 4.9
22
Fatigue Strength, MPa 100
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 340 to 350
580
Tensile Strength: Yield (Proof), MPa 250 to 280
270

Thermal Properties

Latent Heat of Fusion, J/g 530
310
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 910
460
Thermal Expansion, µm/m-K 21
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
45
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 8.0
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1090
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
110
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
190
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 37 to 38
20
Strength to Weight: Bending, points 42 to 43
19
Thermal Shock Resistance, points 16 to 17
16

Alloy Composition

Aluminum (Al), % 88.9 to 91
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
19.5 to 23.5
Copper (Cu), % 0 to 0.2
1.5 to 3.5
Iron (Fe), % 0 to 0.2
22.2 to 37.9
Magnesium (Mg), % 0.5 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
38 to 44
Niobium (Nb), % 0
0.6 to 1.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.5 to 9.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0