MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. Nickel 718

359.0 aluminum belongs to the aluminum alloys classification, while nickel 718 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.8 to 4.9
12 to 50
Fatigue Strength, MPa 100
460 to 760
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
75
Shear Strength, MPa 220 to 230
660 to 950
Tensile Strength: Ultimate (UTS), MPa 340 to 350
930 to 1530
Tensile Strength: Yield (Proof), MPa 250 to 280
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 530
310
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 600
1340
Melting Onset (Solidus), °C 570
1260
Specific Heat Capacity, J/kg-K 910
450
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.6
8.3
Embodied Carbon, kg CO2/kg material 8.0
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1090
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
660 to 4560
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 37 to 38
31 to 51
Strength to Weight: Bending, points 42 to 43
25 to 35
Thermal Diffusivity, mm2/s 59
3.0
Thermal Shock Resistance, points 16 to 17
27 to 44

Alloy Composition

Aluminum (Al), % 88.9 to 91
0.2 to 0.8
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.2
11.1 to 24.6
Magnesium (Mg), % 0.5 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 8.5 to 9.5
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0.65 to 1.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0