MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. S20161 Stainless Steel

359.0 aluminum belongs to the aluminum alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 100
250
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.8 to 4.9
46
Fatigue Strength, MPa 100
360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 220 to 230
690
Tensile Strength: Ultimate (UTS), MPa 340 to 350
980
Tensile Strength: Yield (Proof), MPa 250 to 280
390

Thermal Properties

Latent Heat of Fusion, J/g 530
330
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 600
1380
Melting Onset (Solidus), °C 570
1330
Specific Heat Capacity, J/kg-K 910
490
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
7.5
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1090
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
360
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
390
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
26
Strength to Weight: Axial, points 37 to 38
36
Strength to Weight: Bending, points 42 to 43
29
Thermal Diffusivity, mm2/s 59
4.0
Thermal Shock Resistance, points 16 to 17
22

Alloy Composition

Aluminum (Al), % 88.9 to 91
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.2
65.6 to 73.9
Magnesium (Mg), % 0.5 to 0.7
0
Manganese (Mn), % 0 to 0.1
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.5 to 9.5
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0