MakeItFrom.com
Menu (ESC)

359.0 Aluminum vs. S32050 Stainless Steel

359.0 aluminum belongs to the aluminum alloys classification, while S32050 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 359.0 aluminum and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 100
220
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 3.8 to 4.9
46
Fatigue Strength, MPa 100
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 220 to 230
540
Tensile Strength: Ultimate (UTS), MPa 340 to 350
770
Tensile Strength: Yield (Proof), MPa 250 to 280
370

Thermal Properties

Latent Heat of Fusion, J/g 530
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 8.0
6.0
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1090
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 15
290
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 540
330
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 37 to 38
27
Strength to Weight: Bending, points 42 to 43
23
Thermal Diffusivity, mm2/s 59
3.3
Thermal Shock Resistance, points 16 to 17
17

Alloy Composition

Aluminum (Al), % 88.9 to 91
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 0 to 0.2
0 to 0.4
Iron (Fe), % 0 to 0.2
43.1 to 51.8
Magnesium (Mg), % 0.5 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 0
20 to 23
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 8.5 to 9.5
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0