MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. 2017A Aluminum

Both 360.0 aluminum and 2017A aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 2.5
2.2 to 14
Fatigue Strength, MPa 140
92 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 190
120 to 270
Tensile Strength: Ultimate (UTS), MPa 300
200 to 460
Tensile Strength: Yield (Proof), MPa 170
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 530
390
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 590
650
Melting Onset (Solidus), °C 570
510
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
34
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
3.0
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1070
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 200
90 to 570
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
46
Strength to Weight: Axial, points 32
19 to 42
Strength to Weight: Bending, points 38
26 to 44
Thermal Diffusivity, mm2/s 55
56
Thermal Shock Resistance, points 14
8.9 to 20

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
91.3 to 95.5
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.6
3.5 to 4.5
Iron (Fe), % 0 to 2.0
0 to 0.7
Magnesium (Mg), % 0.4 to 0.6
0.4 to 1.0
Manganese (Mn), % 0 to 0.35
0.4 to 1.0
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 9.0 to 10
0.2 to 0.8
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15